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SUMMARY 

The inviscid separated flow past slender rhombic cones at incidence is considered. A complex potential is 
constructed, in a suitable cross-flow plane, which satisfies the conditions on the wing, at infinity, and on the 
vortex system which models the separated flow. The results obtained both extend earlier results to small inci- 
dence, and explain an anomaly within those results. 

1. I n t r o d u c t i o n  

In this paper we consider the symmetric flow past slender wings, in the form of  rhombic cones, 

at incidence. We model  the separation from the leading edge by spiral vortex sheets in an inviscid, 

potential-f low model. The vortex sheets are infinite in extent  and in our t reatment  we replace 

the spiral by a finite sheet springing from the leading edge, and model  the inner part of  the sheet 

by an isolated vortex core, which is joined to the end of  the sheet by a cut. This model  of  a 

separated flow was first used by Smith [ 1 ] in his study of  the flow past a slender delta wing at 

incidence. These results were subsequently extended by  Barsby [2] to include the effect of  

blowing from the leading edges, and [3] to very low incidences. Meanwhile Smith [4] used the 

model in his s tudy of  the flow past slender rhombic cones and the present work is an extension 

of  [41. 
The use of  slender-body theory reduces the problem under consideration to the solution of  

Laplace's equation in the cross-flow plane. The first step is the conformal transformation of  the 

wing, via a Schwarz-Christoffel transformation,  into a section of  the imaginary axis in the trans- 

formed plane. The wing boundary  condit ion is satisfied by  a distr ibution o f  sources on the trans- 

formed contour.  The complex velocity which satisfies the conditions on the wing and at large 

distances from it is readily available. It includes the vortex sheets and isolated vortices whose 

positions and strengths are unknown. These are determined from the conditions that the vortex 

sheets coincide with stream surfaces and that  across them there is no jump in pressure, together 

with a condit ion that the overall force on the isolated vortex and cut is zero, and that the velo- 

city is finite at the leading edge. The discretization of  the sheet boundary conditions reduces 

the problem to the solution of  a set of  nonlinear algebraic equations. 
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Our treatment of  the problem differs from that in [4] in two distinct ways. The first and 

most important difference is associated with the treatment of  the source-integral which accom- 

modates the wing boundary condition. The treatment in [4] effectively replaces the continuous 
source distribution by a set o f  discrete sources, and this leads to anomalous results as a suitably 

defined incidence parameter decreases. In Section 3 below we show, using the results of  an 
Appendix in [4], how the source-integral may be evaluated analytically and so enable us to ex- 

tend the results o f  [4] as the incidence parameter decreases. A second difference concerns the 

iterative procedure employed to solve the nonlinear algebraic equations. Thus the nested itera- 

tire scheme of  [4] is replaced by a direct Newton iteration scheme which is fully described in 

[5]. This provides rapid convergence to a solution vector from a starting value appropriate to a 

neighbouring solution in the two-parameter space with which we work. 

The results which we have obtained show the effect of  wing thickness upon the vortex con- 

figuration and the circulation about it. In particular we demonstrate that for a wing of  given 

thickness the vortex system collapses into the leading edge of  the wing as the incidence tends to 
zero, and we thus remove the anomaly associated with the results of  [4]. 

2. Formulation of  the problem 

With reference to Fig. 1 we consider, in the slender body and conical flow approximations, the 

flow past a thick delta wing in the form of  a rhombic cone. With origin O at the wing apex the 

x-axis forms the centre-line of  the wing with the y,  z-axes in the plane o f  the cross section of  

the wing. The undisturbed stream of  speed U makes an angle a with the x-axis, and the angle 

between the wing centre line and the leading edge is % 

At a distance x from O the wing has a rhombic cross section, of  semi-span s = Kx where K = 

tan 7, and the angle between the wing surfaces at the leading edge is 6. It proves convenient to 
define 

e = (rr - 6)/2rr, (2.1) 

so that eTr is the angle shown in Fig. 1. 
Following Smith [4] we adapt the slender-body theory of  Ward [6] to our present problem. 

Thus, in the slender-body approximation, we write the complete velocity potential as 

U {x + bo (x)} + q~ (2.2) 

where • is a harmonic function o f y  and z. I f M  denotes the free-stream Mach number and S(x) 
the local cross-sectional area o f  the wing, then bo(x) in (2.2) is defined from 

2~rbo(x)=S'(x)ln -~fl '+~ S " ( t ) l n ( t - x ) d t  

_ 1 ~.~ S " ( t )  In (x - t)  dt ,  
2 -Io 

where/32 = 1 --/V/a for subsonic speeds, and 
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27rbo(x) = S ' (x )  In -~ B - S" ( t )  In (x - t) d t ,  

with B 2 = M 2 - 1 for supersonic speeds. The problem then reduces to solving 

@yy + ¢~zz = 0, (2.3) 

with 

¢ S ' (x )  
- -  ~ o t z  + - -  I n  r ( 2 . 4 )  
U 27r 

at large distances from the wing, where r 2 =y2 + z 2, together with other boundary conditions 

on the wing and vortex sheets. For present purposes there is no need to consider bo(x) further. 

Before introducing other boundary conditions it is convenient to define dimensionless vari- 

ables as 

, g x  , y , z r '  r gP 
x -  , y = - - ,  z = - - ,  = - ,  ¢ = - -  (2.5) 

s s s s KUs 

We now consider the boundary conditions, following Smith [1], [4], for ¢ which supplement 

(2.4). First we consider the boundary conditions on the vortex sheets which spring from the 

leading edges as shown in Fig. 1. Thus the condit ion that the vortex sheet is a stream surface 

gives (the primes on independent variables are henceforth omit ted)  

q~n = - r sin ~0, (2.6) 

where n is the inward normal, and ~0 the angle between the tangent and radius vector as shown 

in Fig. 2. The condit ion that there is no pressure difference across the vortex sheet may be repre- 

sented as 

A¢ = Aea  (r cos ~0 - ~ a  m ) ,  (2.7) 

where A is the difference operator  across the sheet (inside minus outside), o is arc length along 

the cross-section of  the sheet as in Fig. 2, and the suffix m denotes the mean value across the 

sheet. The boundary condit ion on the wing surface, where r sin~o = cos eTr, follows from (2.6) as 

¢n = - cos elf. (2.8) 

Finally, at the leading edge o f  the wing where separation takes place, we impose the Kut ta  con- 

dition that the velocity is finite. 

Following Smith [1 ], [4], we do not a t tempt  to satisfy the condit ions (2.6), (2.7) at all points 

of  the vortex sheet, which is infinite in extent.  Thus we represent the vortex sheet by a finite 

part springing from the leading edge and an isolated line vortex, as shown on the starboard half- 

wing in Fig. 1. The inner part of  the sheet beyond E is concentrated into the line vortex at V; 

across the cut which is left behind the velocity potential  jumps by an amount  equal to the cir- 

culation about the line vortex. Equation (2.7) cannot be satisfied at the cut and we replace it 
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by the condition that the total force on vortex and cut be zero. If W(Z)  is the complex poten- 
tial , such that ¢ = Re(W), with the complex variable Z = y + iz, then this condition of zero 
total force may be written as 

dW P 1 ) 
lim --  = 2 Z  v - 2 E , (2.9) 

z-+z V d Z  2hi Z - - Z  v 

where F is the circulation of the starboa "d isolated vortex, Z 7 ,  Z E represent the positions of the 
isolated vortex and end of the cut respectively, and an overbar denotes the complex conjugate. 

To construct the complex potential it is convenient, as in [4], to first introduce a conformal 
transformation in which the region of the Z-plane to the right of  the wing and the imaginary 
axis transforms into the half-plane Re(Z*) > 0. Thus we write 

Z = 1 + \ t 2 - 7 7 ~ /  dt ,  (2.10) 

and we note that the points A and C on the wing centre-line transform to Z* = + M, whilst the 
leading edge B transforms to the origin Z* = O. The Z*-plane is shown in Fig. 3. 

The wing boundary condition is accommodated by the introduction of a source distribution 
along the slit A B C  in the transformed plane of strength 

2 c o s e n  ] "-~clZ ] (2.11) 

A 

/ 
// 

Figure 3. 

id 

\\\\ 

Is- 

ci 
The transformed plane. The pivotal and intermediate points are denoted by P and I respectively. 
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per unit length, as required to produce the normal velocity cos e rrl dZ/dZ*l directed outwards 

from the slit ABC. It can be shown [4], reverting to dimensional form, that the total source 

strength is US'(x) and as a consequence the sources account for the logarithmic behaviour of ~, 

at large distances, shown in (2.4). The remaining term in (2.4) is accounted for by a uniform 

stream parallel to the imaginary axis in the Z*-plane. The complex velocity for the attached 

flow in the Z*-plane can therefore be written as 

cos err f_ia ~. t = I e dt (2.12) 
- i a +  ~ri ia \ t  2 +d  2 ] Z * - t  

where a = a/k is the incidence parameter. The velocity field is completed by the addition of 

contributions from the vortex system, thus 

d W cos eTr ia t [ ~ ,  e dt 
- - -  i a + - -  f dZ* ni --id ~t~+d2J Zg- t  

- -  " -  " + - -  g * ( o * )  d a * ,  
+ 27ri Z* Z* +Z~  27ri *-Z~(o *) Z*+Z*(o*)  

(2.13) 

where Oma x *  is the arc length of the vortex sheet from the origin to Z~ and g*(o*) denotes the 
sheet strength in the transformed plane and is given by 

dA¢ 
g*(o*) = - - -  (2.14) 

d a* 

Equation (2.13) defines a complex potential W which correctly satisfies the condition (2.8) 
at the wing surface, and the condition (2.4) at infinity. For it to represent a solution of our 

problem the position Z}  and strength P of the isolated vortex, together with the position Z*(o*) 
and strength g*(o*) of the vortex sheet must be determined from the conditions (2.6), (2.7), 

(2.9) and the Kutta condition of finite velocity at the leading edge. We discuss the determination 

of the unknown quantities in the next section. 

3. Solution procedure 

Our numerical treatment of the problem described in section 2 differs in most respects from 

that used to derive the results of [4], and not least in our treatment of the integral, in (2.13), of 
the source distribution along the imaginary axis of the transformed plane. It will be recalled 
from the discussion in section 1 that the results of Smith [4] are open to criticism as the inci- 
dence parameter a becomes small. Thus it might be expected that as a ~ ,0 the vortex system 
collapses into the leading edge of the wing, and indeed calculations based upon the isolated vor- 
tex model of Brown and Michael [11 ] by Clark, Smith and Thompson [7] support this view. In 
[4] the source-integral of (2.13) is discretized by a Gaussian formulation, which implies that the 
continuous distribution of sources is replaced by a distribution of point sources, one at each of 
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the integration points. It is when the distance of the isolated vortex at Z V from the wing surface 
becomes comparable with the spacing of the point sources that the solutions appear to become 
unsatisfactory. That this is the source of the problem has been demonstrated by the present 
author [8] who shows that as the source density increases then the isolated vortex approaches 
closer to the leading edge before the anomalous behaviour observed by Smith [4] manifests itself. 
In the present work our analytic treatment of the source-integral overcomes this difficulty. It 
owes its origins to an Appendix of [4], and is specifically appropriate for small values of the inci- 

dence parameter a. 
Following Barsby [5] we use the intrinsic co-ordinates (o*, 4*) of  Fig. 3 to represent the 

vortex sheet in the transformed plane. Thus in that plane we have 

Z*(o*) = f o  ei~ *(t) dt, (3.1) 

where we have used Z* (0) = 0. In order to perform the necessary numerical integrations around 
the vortex sheet we divide it into 2n equal steps, of  length h, in the arc length o*, and so define 
2n + 1 pivotal points in terms of the values of 4"  at these points. The length of the sheet adopt- 
ed is determined by the values of  h and n. Midway between each pivotal point we have an inter- 

mediate point (see Fig. 3). The values of the quantities under consideration at the intermediate 
points are denoted by a tilde, and it is at these points that we determine the 4n unknowns ~'*, 
g*, i = 1, 2 . . . .  2n. The coordinates of the points on the vortex sheet in the transformed plane 
are obtained by integrating (3.1) using Simpson's Rule on both the intermediate and pivotal 
points. The corresponding points in the cross-flow plane can be obtained by integrating (2.10) 
around the vortex sheet, again using Simpson's Rule. Finally integration along the cut from the 
last pivotal point Z2n + 1 to the isolated vortex Z~. gives the position of the isolated vortexZ v in 
the cross-flow plane. 

Smith [4] showed that the direction of flow at the leading edge is parallel to the lower sur- 
face. Thus with Z* = re i° we determine the value of ~O* at Z* = 0 from (2.10), and noting that 

lim I reiO ( t2 b e rl+2e ei°(l+2e) 
- -  , ( 3 . 2 )  

r-~o Jo t2+d2] d t -  d2e(l+2e) 

so that 7r(-~ - e) = ~ 6 = 0(1 +2e)  at the leading edge, or 

- 6 )  

4"  - - -  (3.3) 
1 + 2 e  

The remaining values of ~0" at the pivotal points are obtained by four-point Lagrangian interpo- 
lation when the values at the intermediate points ~0" have been determined. For further details 
of this and subsequent manipulations reference may be made to [8]. 

At the intermediate points we also have the 2n unknown values of the sheet strength g*. 
Now we note that 

d 0do, qdz. L g ( o ) - -  d ~ - -  do* d o - g * ( a * )  - - ~  (3.4) 
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which, using (2.10), gives 

g*(o*)=g(o) ~Z,-~--;d~ ] , 

implying that, for finite sheet strength at the physical leading edge g*(0) = g* = 0. The values 
of g* at the other pivotal points are determined from the values'g*, again by Lagrangian inter- 
polation. 

The remaining three quantities to be determined are the position of  the isolated vortex in 
the transformed plane Z~, and its strength F. In all this gives us a total of 4n + 3 unknown 
quantities. 

We now consider a suitable discretization of the boundary conditions from which we have 
4n + 3 conditions corresponding to our 4n + 3 unknown quantities. 

From the requirement of zero total force on the isolated vortex and cut (2.9), which provides 
two of  the conditions, we have, using (2.13), 

= - -  +R v - -  + 2 Z v - Z  E ia + 2zri dZ ] Z v  

1 

+ 2.----TZ.Zv[ Z*-Z~.  Z* +2 7 dZ Z - Z  V ' 

where we have written 

{',rma x 2g*(o*) Re(Z*(o*)) do* 
S v  A {z~.- z* (o*)} {z~. + 2* (o*)} ' 

Now, since 

// 1 dZ* 

z--'zvlim ~ Z , _ Z ~ .  dZ 

1 1 ( d 2 Z  * / d Z *  

using the Taylor series for Z * - Z ~ ,  and since from (2.10) we may deduce that 

d 2Z* 2ed 2 ( dZ* ]2 

dZ~ - z * ~ T z * ~ ) ~  I 

(3.6) 

the second term on the right-hand side of (3.5) may be written as 

4rri Re(Z~,) + Z~(d2 + Z~  2) Z~  2 

The integral which defines S v in (3.6) is evaluated by Simpson's Rule which leaves only the 
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evaluation o f R  V in (3.6). Smith [4] obtained the value of this integral numerically, thereby re- 
placing the continuous source distribution by a discrete distribution; however he demonstrated 

in an Appendix to his paper that R v could be represented analytically as 

Z ~  2 e t cos eIr " Z ~ )  1-2e 

RV =( z ~  z +dz ) l - B(½ + e, l - e )  rr(1--_2e) (--- ~ x 

(3.7) 
1 3 l ~ 2  

X 2 F l ( 1 - e ,  ~ - e ;  ~ - e ;  - d2 ~" , 

where B is the beta function and 2F1 the hypergeometric function. Now the series for the 
hypergeometric function will converge provided IZ~, I< d. The quantity d = d(e)may be deter- 
mined by evaluating (2.10) at the point A of Fig. 2 for which Z* = id. Thus Smith [4] has 
shown that d -1 varies, almost linearly, from 0 to 1.0 as e increases from 0 to 0.5. It is precisely 
the situation I Z~/dl  small which is of interest to us here since for the small values of the inci- 
dence parameter a under consideration IZ~[ will be small as the vortex configuration collapses 
into the leading edge. We have therefore evaluated R V by summing the series for 2F1 in (3.7), 
and in all cases we have terminated the series, whose first term is unity, when the last term is less 

than 10 -s in absolute value. 
We have next the Kutta condition of finite velocity at the leading edge which in the transfor- 

med plane becomes 

dW 
- 0  at Z * = 0 .  (3.8) 

dZ* 

From (2.13) this may be written, after a little manipulation, as 

y~Tmax g*(o*) Re(Z*(o*))  Re(Z~,) 
I Z , ( o , ) I  2 d o * +  IZ~  12 I ' = l r a ,  (3.9) 

and the integral evaluated using Simpson's Rule. 
We now have, in equations (3.5) and (3.9), three conditions with the remaining 4n which are 

required to be determined by applying each of the vortex-sheet conditions (2.6), (2.7) at the 2n 
intermediate points. First we combine (2.6) and (2.7) to give, after a slight re-arrangement 

A¢ = A(~ o {re i¢ - ( ( ~ O m  - iCn)}. 

Now it can be shown [1] that 

(3.10) 

dW 
do = Oam - idpn' (3.11) 

and from (2.14) we have, following an integration, 

At~ = 1 ~ + fo*°max g*(t)dt .  (3.12) 
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- -  1 

Also, with r = (ZZ)  ~ , and ~0 = ~b - 0 as in Fig. 2, we may write 

rei~ = 2 e i ~ ,  (3.13) 

and we have 

dW __dZ* dW do* _-eiq~* dW ] dZ* t 
d ~ - - d o *  dZ* do  dZ* ~ ' (3.14) 

and so from equations (3.4) and (3.11) to (3.14), the sheet condition (3.10) may be written as 

F + fo*°max g * ( t ) d t  = - g * ( a * ) e  iqv" ~ Z --dZ* dZ* ' (3.15) 

which is to be evaluated at each intermediate point Z*.  The integral on the left-hand side is eval- 
uated using Simpson's Rule. For the right-hand side we note, from (2.13), that 

[ F (~// 1 1 ) Si 
d W  = - i a  + - -  ~ 2rri 

dZ* z'i* 2 ~ri - Z ~  Z* + Z ~  + Ri + - -  ' 

where R i is as in (3.7) but with Z ~  replaced by Z*, and is evaluated by again expressing the 
hypergeometric function as a series, and 

= m a x  . ~ d a * .  (3.16) 
si g*(°*) z* +2*(o*) 

We see from (3.16) that we are now required to evaluate a Cauchy Principal-Value integral and 

as a consequence, following Barsby [5], we rearrange the integrand so that the singularity appears 

in an integral which can be evaluated analytically. Thus 

N*(o*)+Z* dZ*/do* l ~,; Z*(e*)- Z* 

 3.17  - -  g ,~  e - i ~ *  In - ~ - - - - - -  
z?-z? 

We now have, from (3.5), (3.9) and (3.15) a total of  4n + 3 nonlinear algebraic equations for 
the 4n + 3 unknown quantities ~b*, g* (i = 1, 2 ... .  2n), Z ~  and F. To solve these equations we 
do not use the nested iteration scheme of  Smith [1 ], [4] but the more direct Newton iteration 
method employed by Barsby [3], [5]. Thus we write the equations in the form 

f i ( x ) = 0 ,  i = 1 , 2  . . . .  4 n + 3 ,  

where x is the vector of  the 4n + 3 unknowns, and then use the iterative solution procedure 

Xk+l __X k _  ( jk) - l  C, 
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where a superscript k denotes the k TM iteration a n d J  k is the Jacobian matrix bf~lbxj. This ite- 

rative procedure gives quadratic convergence, but in practice to obtain a solution we find it nec- 

essary to invert the matrix only once (or at most twice) and so effectively only gain linear con- 

vergence. For the solutions presented below the iterative scheme was deemed to have converged 

when 

i=1 < 10-6" (3.18) 

Given a solution at a particular point (a, e) in parameter space then to obtain a new solution 

we have usually fixed one of  these parameters and varied the other by about 10%. With the 

original solution as the zeroth iterate we have found that convergence to a new solution, as 

def'med by (3.18), is usually obtained within about 10 iterations. 

The results we have obtained in the manner outlined in this section are described below. 

4. Results 

Before describing the results obtained by the method set out in section 3 we note that the total 

circulation about the vortex configuration is given simply as 

r t  = r + fo~max g*(o*)do* (4.1) 

and we have evaluated the integral in (4.1) using Simpson's rule in which both the pivotal and 

intermediate points are employed. 

The length o f  the vortex sheet used in the calculations is determined by the number 2n, and 

spacing h, o f  the pivotal points. In all our calculations the angular extent o f  the sheet was main- 

1 IZ~ I. As Smith [ I ]  has demonstrated, tained approximately constant by taking n = 6 and h = 

there is virtually no advantage to be gained from the use of  longer sheets. 

Results have been obtained in (a, e)-space by fixing one parameter and varying the other. 

Initially we have compared our results for e = 0.5 and various values of  the incidence parameter 

a with the results for the flat-plate delta wing in [1], [3], and also for a = 1.0 and various values 

of  the thickness parameter e with the results o f  [4] for a thick wing. Agreement was found for 

the position of  the isolated vortex and overall circulation to within less than 3%. This was con- 

sidered acceptable in view of  the differences between the various methods used to derive the 
solutions. 

As we have noted in earlier sections there is an apparent difficulty with the results of  Smith 

[4] in that as the incidence parameter a decreases the vortex configuration, and in particular the 

isolated vortex core, does not collapse as expected into the leading edge. We discuss that aspect 

of  our solutions first with reference to Figs 4 to 6. Consider Fig. 5 where the thickness para- 
1 

meter e = g which is the value for which Smith's solutions are apparently least satisfactory. We 

show the position o f  the isolated vortex for this wing as the incidence parameter is reduced to 
zero and consider first Smith's results. The solutions terminate at a = 0.2 and it can be seen that 

for a = 0.3, 0.2 the vortex is moving towards the wing surface rather than the leading edge. In 
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deriving his results Smith uses an integration formula which effectively replaces the continuous 

source distribution by 50 discrete sources. We have repeated his calculations with 500 discrete 

sources and these are seen to be satisfactory for a > 0.2 but  again become unsatisfactory as a 

decreases below that value. Clearly for any fixed value of a the solution can be made satisfactory 

by increasing the number of discrete sources, but such a process is prohibitive in terms of com- 

puter time. By treating the source-integral analytically, and evaluating the hypergeometric func- 

tion from its series expansion as described in section 3, we are able to find solutions much more 

economically, and as seen in Figs 4 to 6 we are able to obtain solutions at very small values ofa .  

The solutions obtained in this way have no unsatisfactory features, and the vortex centre is seen 

to move almost linearly into the leading edge. Also in Fig. 5 are shown results obtained in [7] 

using an isolated vortex model. Again as a ~ 0 the vortex moves to the leading edge, but as inci- 

dence increases these results are seen to be inadequate. In Figs 4 and 6 we show the results of 
1 

our present calculations for e = ¼, ~ ,  respectively and, where available, compare with the results 

in [4]. 

For the case of a fiat-plate delta wing, for which e = 0.5, Barsby [3] found that for a ~< 0.038 

the vortex sheet no longer separated from the leading edge, but from a point on the wing surface 
1 just inboard of the edge. For the case of the thick wing with e = g we found that the incidence 

parameter could be reduced to a = 10 -s with no evidence of inboard separation. To discover at 

what value of e separation first moves inboard from the leading edge a sequence of results fora = 

0.01 with increasing e was obtained. No solutions could be found for e > 0.392, and since our mo- 

del is not appropriate for inboard separation we presume that the separation point moves inboard 

0 . 4  
S 
S" 

0.3 

0.2 

O.1 

I 

\ 
\ 

\ 

0 I I I 

0 - 0  0-1 a 0 -2  0 .3  

Figure 7. Validity of solutions in (a, e) parameter space. Smith's [4] solutions are valid to the right of the 
broken line, whilst satisfactory solutions have been obtained by the present method to the right of the full 
line. Inboard solutions only are available to the left of that line. The points S, S' correspond to leading-edge 
angles of 39.5 ° and 42.5 ° respectively. 
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at this value. From further investigation we were able to delineate a relatively small area in (a, e)- 
space in which no solution with leading-edge separation exists. This is shown in Fig. 7 and it 

seems reasonable to assume that inboard separation occurs here, contrary to the conjecture in 
[3] that inboard separation is the result of  a lack of  thickness of  the wing. Extrapolation in Fig. 
7 to the point S shows that for wings of  leading-edge angle less than about 39.5 ° inboard 
separation will be obtained for sufficiently small values ofa.  The corresponding value from the 
isolated vortex model described in [7] is 42.5 °. Also shown in Fig. 7 is the approximate limit of 
validity of  Smith's solutions [4]. The criterion for validity is that the distance between the 
isolated vortex of  Smith's solutions and that in the present solutions must be less than one 
tenth of the distance between the leading edge of  the wing and the isolated vortex. 

In Fig. 8 we give a typical example of the effect of wing thickness on the shape of the vortex 
sheet and position of  the vortex core. Thus as the thickness increases there is a marked move- 
ment of the vortex core outboard and a shrinkage of the whole vortex system towards the lead- 
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ing edge. The point of inflexion on the sheet for the thickest wing shown in Fig. 8 is associated 

with the fact that the vortex sheet leaves the leading edge in a direction tangential to the lower 

surface. 

The variation of total circulation, calculated from (4.1), with the incidence parameter a for 

wings of three different thicknesses is shown in Fig. 9. We note that the initial rate of growth of 
1 circulation at zero incidence is zero for thick wings although for the case of the flat plate, e = ~, 

it is non-zero. This agrees with the results for the simpler model of [7]. Also shown in Fig. 9 are 

the results of Smith [4]; as for the vortex position differences between those results and the re- 

sults obtained by the present method are apparent. Finally we note that it was observed during 

the course of the present calculations that the proportion of circulation on the finite vortex 

sheet decreases as the wing thickness increases. 
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